2756: [SCOI2012]奇怪的游戏
Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 1594 Solved: 396[][][] Description
Blinker最近喜欢上一个奇怪的游戏。 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数。每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1。 现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同 一个数则输出-1。
Input
输入的第一行是一个整数T,表示输入数据有T轮游戏组成。 每轮游戏的第一行有两个整数N和M, 分别代表棋盘的行数和列数。 接下来有N行,每行 M个数。
Output
对于每个游戏输出最少能使游戏结束的次数,如果永远不能变成同一个数则输出-1。 Sample Input
2 2 2 1 2 2 3 3 3 1 2 3 2 3 4 4 3 2 Sample Output
HINT
【数据范围】
对于30%的数据,保证 T<=10,1<=N,M<=8
对于100%的数据,保证 T<=10,1<=N,M<=40,所有数为正整数且小于1000000000
题解:
我们把整个棋盘的格子分为两种,一种为白,一种为黑
然后设最后的格子全部变成了x,那么x*num1-sum1=x*num2-sum2;
其中num1为白色格子数量,num2位黑色格子数量,sum1为白色格子权值和
那么,我们可以得到x=(sum1-sum2)/(num1-num2)
当num1!=num2的时候,我们可以直接通过最大流来check
否则的话,我们就二分枚举答案
首先如果x能够成立的话,那么大与x的所有数都能成立,只要再铺一层就好,而且num1+num2%2==0
所以题目的思路还是比较简单的~
#include #include #include #include #include #include #include #include #include #include